第6章 三角恒等式与方程 - 知识点总结
对于单位圆上的一点 \(P(x, y)\),其中 \(OP\) 与正 \(x\) 轴成角 \(\theta\):
| 象限 | 角度范围 | sin θ | cos θ | tan θ |
|---|---|---|---|---|
| 第一象限 | 0° < θ < 90° | + | + | + |
| 第二象限 | 90° < θ < 180° | + | - | - |
| 第三象限 | 180° < θ < 270° | - | - | + |
| 第四象限 | 270° < θ < 360° | - | + | - |
\(\sin(\pi - \theta) = \sin\theta\)
\(\cos(\pi - \theta) = -\cos\theta\)
\(\tan(\pi - \theta) = -\tan\theta\)
| 角度 | 弧度 | sin | cos | tan |
|---|---|---|---|---|
| 30° | \(\frac{\pi}{6}\) | \(\frac{1}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\) |
| 45° | \(\frac{\pi}{4}\) | \(\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\) | \(\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\) | 1 |
| 60° | \(\frac{\pi}{3}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{2}\) | \(\sqrt{3}\) |
\(\sin^2\theta + \cos^2\theta \equiv 1\)
\(\tan\theta \equiv \frac{\sin\theta}{\cos\theta}\)(当 \(\cos\theta \neq 0\) 时)
形如 \(\sin n\theta = k\)、\(\cos n\theta = k\)、\(\tan n\theta = p\) 的方程
形如 \(\sin(\theta + \alpha) = k\)、\(\cos(\theta + \alpha) = k\)、\(\tan(\theta + \alpha) = p\) 的方程
形如 \(a\sin^2\theta + b\sin\theta + c = 0\) 的方程
\(\sin^2\theta + \cos^2\theta \equiv 1\)
\(\tan\theta \equiv \frac{\sin\theta}{\cos\theta}\)
\(\sin(\pi - \theta) = \sin\theta\)
\(\cos(\pi - \theta) = -\cos\theta\)
\(\tan(\pi - \theta) = -\tan\theta\)
\(\sin 30° = \frac{1}{2}, \cos 30° = \frac{\sqrt{3}}{2}, \tan 30° = \frac{1}{\sqrt{3}}\)
\(\sin 45° = \cos 45° = \frac{1}{\sqrt{2}}, \tan 45° = 1\)
\(\sin 60° = \frac{\sqrt{3}}{2}, \cos 60° = \frac{1}{2}, \tan 60° = \sqrt{3}\)